

Sol-Gel Glasses

Manufacturing Technologies

The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the solgel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate. Sol-gel derived materials have diverse applications in optics, electronics, energy, space, sensors and separation technology.

The department also makes highly porous bulk and thin film aerogels using a sol-gel process. These novel materials have unique properties (>90% porosity, ultra-low density, low thermal conductivity) that lead to applications as acoustic insulation, highly efficient inorganic insulation, low K dielectrics and as inert porous matrices for sensors or optics.

Capabilities

- Formulate and produce single and multicomponent glass and ceramic materials with controlled porosity (templated or non-templated) by low temperature solution chemical polymerization (sol-gel techniques)
- Deposit sol-gel thin films by spinning, dipping, spraying, electrophoresis, ink jet printing or

Coating with Sol-Gel glasses

roll coating for reflection control, planarization, protection, dielectric barriers, enhanced surface conductivity, inert porous matrix for sensors or surface modification

- Produce ultra-low density (<150 mg/cc) bulk aerogel glass by either CO₂ solvent exchange and supercritical solvent removal or low temperature/pressure (LTP) processing. Thin aerogel films can be deposited on substrates by the LTP process
- Entrain particles, optically active compounds and chemically selective reagents into sol-gel films or controlled porosity bulk sol-gels (aerogels or xerogels)
- Perform process development and scale-up of laboratory research processes

Resources

 Chemical laboratory and equipment necessary for the sol-gel synthesis and characterization of ceramic and glass materials

- An ellipsometer to measure the thickness and refractive index of deposited sol-gel films
- Test equipment for precision glass analysis (DTA, DSC, and dilatometer) and sol-gel thin film optical properties (IR and visible reflectance and transmission)
- Glove boxes for controlled atmosphere deposition of sol-gel films by computer controlled dip coaters or spin coaters

- Prototype roll coater
- · Aerogel machining
- Close collaboration with the sol-gel materials research groups at Sandia and the University of New Mexico

Accomplishments

- Demonstrated the volume expansion (spring back) of aerogels made from the LTP process allowing net-shaping of bulk aerogels, minimizing or eliminating aerogel machining in some applications
- Developed a technique to mass-produce small volumes of insulating aerogel beads
- Deposited LTP aerogel thin films by dip coating
- Deposited anti-reflective sol-gel coatings by dip coating on the inside and outside of 10 foot long x 2.5 inch diameter glass tubes
- Improved the specular reflectance by sol-gel planarizing the metal substrate of a first surface mirror
- Sandia sol-gel protected first surface mirrors were included in Space Shuttle material evaluation experiments
- Developed system to spray coat a protective

- sol-gel film on a 6-inch wide web moving at 20 feet per minute
- Incorporated phosphor particles and carbon particles into aerogels for radioluminescent lighting and high performance thermal insulation, which demonstrated record setting brightness for a tritium-powered light
- Developed a technique to spin coat a low porosity sol-gel glass film on the inside of an alumina gas separation membrane tube
- · Numerous patents issued

Contact

Scott Reed, (505) 845-9151 streed@sandia.gov

Carol Ashley, (505) 272-7629 csashle@sandia.gov

SAND2003-3897P